2.9.1 Matriks, SPM Praktis (Kertas 1 Soalan 1 – 10)


Soalan 1:
( 1 4 6 2 ) + 3 ( 2 0 4 3 ) ( 3 0 2 5 ) =
 
Penyelesaian:
( 1 4 6 2 ) + 3 ( 2 0 4 3 ) ( 3 0 2 5 ) = ( 1 4 6 2 ) + ( 6 0 12 9 ) ( 3 0 2 5 ) = ( 7 4 18 7 ) ( 3 0 2 5 ) = ( 7 ( 3 ) 4 0 18 ( 2 ) 7 ( 5 ) ) = ( 10 4 20 2 )


Soalan 2:
Cari nilai dalam persamaan matriks berikut:
( 9 4 5 0 ) + 1 2 ( 8 m 6 10 ) = ( 13 7 2 1 )

Penyelesaian:
( 9 4 5 0 ) + 1 2 ( 8 m 6 10 ) = ( 13 7 2 1 ) 4 + 1 2 m = 7 1 2 m = 3 m = 6


Soalan 3:
Diberi ( 2x 3y )4( 2 3 )=( 2 6 ) Cari nilai x dan y.
 
Penyelesaian:
2x + 8 = –2
2x = –10
= –5
 
3y – 12 = 6
3y = 18
= 6 


Soalan 4:
Diberi bahawa persamaan matriks 3 (6   m) + n (3   4) = (12   7),
Cari nilai + n.
 
Penyelesaian:
3 (6   m) + n (3   4) = (12   7) 
18 + 3n = 12
3n = –6
= –2
3m + 4n = 7
3m + 4(–2) = 7
3m = 15
= 5

Maka m + n = 5 + (–2) = 3


Soalan 5:
Diberi bahawa Q ialah matriks ( m    3 4 n )  dan songsangan Q ialah 1 2 (  2   3 4    m ).  Carikan
nilai m dan n.

Penyelesaian:

Rumus matriks songsang,
( m    3 4 n ) 1 = 1 mn12 (  n   3 4    m ) Secara  bandingan 1 mn12 (  n  3 4   m )= 1 2 (  2  3 4   m ) n=2,  mn12=2    2m12=2   2m=10 m=5

Soalan 6:
Diberi bahawa  matriks A = (  3 6 2   m ),  carikan nilai m jika matriks A tidak mempunyai
songsangan.

Penyelesaian:
Jika ( a    b c    d ) tidak mempunyai songsangan, maka penentunya adbc = 0
3m – 6(–2) = 0
3m + 12 = 0
3m = –12
  = –4



Soalan 7:
Diberi bahawa ( 3 x ) ( x 1 ) = ( 18 ) ,  cari nilai x.

Penyelesaian:
( 3 x ) ( x 1 ) = ( 18 )
[3 × x + x (–1)] = (18)
3xx = 18
2x = 18
x = 9


Soalan 8:
( 3 4 2 3 ) ( 5 2 ) =

Penyelesaian:
( 3 4 2 3 ) ( 5 2 ) = ( ( 3 ) ( 5 ) + ( 4 ) ( 2 ) ( 2 ) ( 5 ) + ( 3 ) ( 2 ) ) = ( 15 8 10 6 ) = ( 7 16 )




Soalan 9:
( 2 4 3 4 0 1 ) ( 1 3 ) =

Penyelesaian:
Peringkat hasil darab dua matriks
= ( 3 × 2 ) ( 2 × 1 ) = ( 3 × 1 )

( 2 4 3 4 0 1 ) ( 1 3 ) = ( 2 ( 1 ) + 4 ( 3 ) ( 3 ) ( 1 ) + 0 ( 3 ) ( 4 ) ( 1 ) + 1 ( 3 ) ) = ( 2 12 3 + 0 4 3 ) = ( 10 3 1 )




Soalan 10:
( 1 1   2 ) ( 5 1 3 2 0 4 ) =

Penyelesaian:
Peringkat hasil darab dua matriks
= ( 1 × 3 ) ( 3 × 2 ) = ( 1 × 2 )

( 1 1   2 ) ( 5 1 3 2 0 4 ) =
= (1×5 + (–1)(–3) + (2)(2)  1×1 + (–1)(0) + (2)(4))
= (5 + 3 + 4   1 + 0 + 8)
= (12   9)


Leave a Comment