2.10.1 Matriks, SPM Practis (Soalan Panjang)


2.10.1 SPM Practis (Soalan Panjang)
 
Soalan 1:
Diberi bahawa matriks A = ( 3 1 5 2 )  
(a)  Cari matriks songsang bagi A.
(b)  Tulis persamaan linear serentak berikut dalam persamaan matriks:
  3uv = 9
  5u – 2v = 13
Seterusnya, menggunakan kaedah matriks, hitung nilai u dan nilai v.

Penyelesaian:
(a) A 1 = 1 3 ( 2 ) ( 5 ) ( 1 ) ( 2 1 5 3 ) = 1 ( 2 1 5 3 ) = ( 2 1 5 3 )

(b) ( 3 1 5 2 ) ( u v ) = ( 9 13 ) ( u v ) = 1 ( 2 1 5 3 ) ( 9 13 ) ( u v ) = 1 ( ( 2 ) ( 9 ) + ( 1 ) ( 13 ) ( 5 ) ( 9 ) + ( 3 ) ( 13 ) ) ( u v ) = 1 ( 5 6 ) ( u v ) = ( 5 6 ) u = 5 , v = 6


Soalan 2:
Diberi bahawa matriks A = ( 2 5 1 3 )  dan matriks B = m ( 3 k 1 2 )  dengan keadaan
AB = ( 1 0 0 1 )  
(a)  Cari nilai m dan nilai k.
(b)  Tulis persamaan linear serentak berikut dalam persamaan matriks:
  2u – 5v = –15
  u + 3v = –2
Seterusnya, menggunakan kaedah matriks, hitung nilai u dan nilai v.

Penyelesaian:
(a)
AB= ( 1 0 0 1 ) , Songsang bagi matriks A ialah B.
m = 1 ( 2 ) ( 3 ) ( 5 ) ( 1 ) = 1 11  
k= 5

(b)
( 2 5 1 3 ) ( u v ) = ( 15 2 ) ( u v ) = 1 11 ( 3 5 1 2 ) ( 15 2 ) ( u v ) = 1 11 ( ( 3 ) ( 15 ) + ( 5 ) ( 2 ) ( 1 ) ( 15 ) + ( 2 ) ( 2 ) ) ( u v ) = 1 11 ( 55 11 ) ( u v ) = ( 5 1 ) u = 5 , v = 1

Leave a Comment